Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency
نویسندگان
چکیده
BACKGROUND Body-powered prostheses require cable operation forces between 33 and 131 N. The accepted upper limit for fatigue-free long-duration operation is 20% of a users' maximum cable operation force. However, no information is available on users' maximum force. OBJECTIVES To quantify users' maximum cable operation force and to relate this to the fatigue-free force range for the use of body-powered prostheses. STUDY DESIGN Experimental trial. METHODS In total, 23 subjects with trans-radial deficiencies used a bypass prosthesis to exert maximum cable force three times during 3 s and reported discomfort or pain on a body map. Additionally, subjects' anthropometric measures were taken to relate to maximum force. RESULTS Subjects generated forces ranging from 87 to 538 N. Of the 23 subjects, 12 generated insufficient maximum cable force to operate 8 of the 10 body-powered prostheses fatigue free. Discomfort or pain did not correlate with the magnitude of maximum force achieved by the subjects. Nine subjects indicated discomfort or pain. No relationships between anthropometry and maximal forces were found except for maximum cable forces and the affected upper-arm circumference for females. CONCLUSION For a majority of subjects, the maximal cable force was lower than acceptable for fatigue-free prosthesis use. Discomfort or pain occurred in ~40% of the subjects, suggesting a suboptimal force transmission mechanism. Clinical relevance The physical strength of users determines whether a body-powered prosthesis is suitable for comfortable, fatigue-free long-duration use on a daily basis. High cable operation forces can provoke discomfort and pain for some users, mainly in the armpit. Prediction of the users' strength by anthropometric measures might assist the choice of a suitable prosthesis.
منابع مشابه
Is body powered operation of upper limb prostheses feasible for young limb deficient children?
The investigators measured efficiencies of body powered prehensors and cable control components of prostheses available for young children. Results indicated that the cable control systems and hook type prehensors have moderate to high efficiencies, but children's body powered hands have very low efficiencies. Measures of arm and shoulder strength of 3-5 year-old limb deficient children, both o...
متن کاملTraining protocol for a powered shoulder prosthesis.
There is a scarcity of literature on rehabilitation training protocols for upper-limb prosthesis use. Seminal textbooks and articles describe protocols for training individuals to use conventional body-powered, myoelectric, or passive prosthetic devices and were written prior to the introduction of multifunction prosthetic hands and more advanced prosthetic technologies [1–3]. Furthermore, deta...
متن کاملReliability-based maintenance scheduling of powered supports in Tabas mechanized coal mine
Utilizing the gathered failure data and failure interval data from Tabas coal mine in two years, this paper discusses the reliability of powered supports. The data sets were investigated using statistical procedures and in two levels: the existence of trend and serial correlation. The results show that the powered supports follow the Gamma reliability function. The reliability of the machine de...
متن کاملDifferences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to infor...
متن کاملPowered prosthetic hands in very young children.
Myoelectric prostheses are generally not provided in the United Kingdom for children before the age of 3 1/2 years. Following the introduction of a smaller sized electric hand in the United Kingdom in 1993 the authors decided to introduce electrically powered hands for a group of congenital upper limb deficient children at a much younger age compared to normal practice. Eleven children were int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2018